

Inspection and Maintenance of Switches and Derails

Course 202 PARTICIPANT GUIDE

Inspection and Maintenance of Switches and Derails

Participant Guide

Signals Maintenance Training Consortium

COURSE 202

July 2019 Version

Disclaimer: This module is intended to educate employees of transit agencies that have agreed to voluntarily participate in the Signals Maintenance Consortium. It is intended only as informal guidance on the matters addressed, and should not be relied upon as legal advice. Anyone using this document or information provided in the associated training program should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of care in any given circumstances. The Signals Consortium, it's participating agencies and labor unions, as well as the Transportation Learning Center, make no guaranty or warranty as to the accuracy or completeness of any information provided herein. The Signals Consortium, its participating agencies and labor unions, as well as the Transportation Learning Center, disclaims liability for any injury or other damages of any nature whatsoever, directly or indirectly, resulting from the use of or reliance on this document or the associated training program.

TABLE OF CONTENTS	PAGE
How to Use the Participant Guide	X
MODULE 1: OVERVIEW AND SAFETY	1
1-1 OVERVIEW	2
1-2 SAFELY WORKING IN AN ELECTRIFIED TERRITORY	
1-3 SWITCH SPECIFIC SAFETY	
1-4 TOOLS	
1-5 TESTING.	14
1-6 SUMMARY	
MODULE 2: SWITCH AND DERAIL SPECIFIC PRINT READING	
2-1 OVERVIEW	
2-2 SWITCH AND DERAIL SPECIFIC NOMENCLATURE	
2-3 SWITCH AND DERAIL SPECIFIC SYMBOLS	
2-4 SWITCH AND DERAIL SPECIFIC RELAYS	
2-5 SWITCH SEQUENCE OF OPERATION	
2-6 SUMMARY	
MODULE 3: GENERAL INSPECTION & MAINTENANCE OF SWITC	CHES AND
DERAILS	
3-1 OVERVIEW	
3-2 GENERAL INSPECTION AND MAINTENANCE	
3-3 LUBRICATION	
3-4 INSPECTING AND MAINTAINING RODS	
3-5 INSPECTING AND MAINTAINING CIRCUIT CONTROLLERS	
3-6 INSPECTING AND MAINTAINING ANCILLARY DEVICES	
3-7 SEASONAL INSPECTION AND MAINTENANCE	
3-8 TESTING	
3-9 INSPECTION AND MAINTENANCE CLEAN-UP	
3-10 SUMMARY	

MODULE 4: INSPECTION & MAINTENANCE OF MANUAL SWIT	CHES AND
DERAILS	••••••
4-1 OVERVIEW	
4-2 GENERAL INSPECTION AND MAINTENANCE	
4-3 LUBRICATION	
4-4 INSPECTING AND MAINTAINING CIRCUIT CONTROLLERS	
4-5 INSPECTING AND MAINTAINING ELECTRIC SWITCH LOCKS .	
4-6 SEASONAL INSPECTION AND MAINTENANCE	
4-7 TESTING	
4-8 SUMMARY	
MODULE 5: INSPECTION & MAINTENANCE OF ELECTRIC SW	ITCHES AND
DERAILS	
5-1 OVERVIEW	
5-2 GENERAL INSPECTION AND MAINTENANCE	
5-3 LUBRICATION	•••••
5-4 INSPECTING AND MAINTAINING CIRCUIT CONTROLLERS	
5-5 SEASONAL INSPECTION AND MAINTENANCE	
5-6 TESTING	
5-7 SUMMARY	
MODULE 6: INSPECTION & MAINTENANCE OF PNEUMATIC S	WITCHES AN
DERAILS	
DERAILS.	
6-1 OVERVIEW	
6-1 OVERVIEW	
6-1 OVERVIEW6-2 GENERAL INSPECTION AND MAINTENANCE	
6-1 OVERVIEW6-2 GENERAL INSPECTION AND MAINTENANCE6-3 LUBRICATION	
 6-1 OVERVIEW 6-2 GENERAL INSPECTION AND MAINTENANCE 6-3 LUBRICATION 6-4 INSPECTING AND MAINTAINING CP VALVES 	

MODULE 7: INSPECTION & MAINTENANCE OF HYDRAULIC SWITCHES AND

DERAILS	
7-1 OVERVIEW	
7-2 SENSORY INSPECTION	
7-3 LUBRICATION	
7-4 TESTING	
7-5 SUMMARY	

LIST OF FIGURES

Figure 1.1 Signal Maintainer Wearing Proper PPE for Inspection and Maintenance of Switches	5
- Courtesy SacRT	
Figure 1.2 Hand Throw Lever in Lever Lock Stand - Courtesy LIRR	5
Figure 1.3 In Pavement Electro-Hydraulic Switch with Red Hand Lever in Place in Lever Box -	
Courtesy SacRT	
Figure 1.4 Switch Clamp - Courtesy SacRT	7
Figure 1.5 Switch Clamp in Use - Courtesy SacRT	
Figure 1.6 Spike Against Closed Point - Courtesy LIRR	7
Figure 1.7 Block Wedged Tightly between Open Point and Stock Rail - Courtesy LIRR	
Figure 1.8 The Wrong Way to Stand Near a Switch - Courtesy LIRR	
Figure 1.9 The Right Way to Stand Near a Switch - Courtesy LIRR	
Figure 1.10 Heater Wires - Courtesy LIRR	
Figure 1.11 Bonding Wires - Courtesy LIRR	
Figure 1.12 RSA Wrench - Courtesy LIRR	
Figure 1.13 Cup Gauge - Courtesy LIRR	
Figure 1.14 Spring Gauge - Courtesy LIRR	
Figure 1.15 Lock Rod Wrench - Courtesy LIRR	
Figure 1.16 Switch Crank - Courtesy LIRR	
Figure 1.17 Operating Wrench - Courtesy LIRR1	
Figure 1.18 Obstruction Gauge - Courtesy LIRR	
Figure 1.19 Spanner Wrench - Courtesy LIRR	3
Figure 1.20 Example Test Documentation Form - Courtesy MBTA	
Figure 2.1Example of a Typical Straight Line Locking Relay Circuit - Courtesy PATCO2	4
Figure 2.2 Example of a Typical Drop Line Locking Relay Circuit - Courtesy MBTA	
Figure 2.3 Overload Relay Represented on a Print	
Figure 2.4 Picture of Overload Relay - LIRR	
Figure 2.5 & SML represented on a print - LIRR	
Figure 2.6 Picture of SML - LIRR	
Figure 2.7 Reverse Indication Light on While Reverse Switch Repeater Relay is Energized 2	
Figure 2.8 Example Normal Configuration of an Electric Switch	
Figure 2.9 Example Reverse Configuration Control Circuit of an Electric Switch	
Figure 2.10 Example Reverse Configuration Motor Circuit of an Electric Switch	
Figure 2.11 Example Reverse Configuration Motor Circuit of an Electric Switch in an Overload	d
Condition	
Figure 2.12 Example Reverse Configuration Indication Circuit of an Electric Switch	
Figure 2.13 Example of a Heater Circuit of an Electric Switch	
Figure 3.1 Switch Layout Highlighting Hardware to Inspect - Courtesy LIRR	
Figure 3.2 Insulation - Courtesy LIRR	
Figure 3.3 Switch Broom Bristles - Courtesy SacRT	
Figure 3.4 Switch Broom Scraper - Courtesy SacRT	
Figure 3.5 Liquefied Graphite and Graphite Brush - Courtesy LIRR	
Figure 3.6 Applying Graphite to a Switch Plate and Track Rod on an Open Point - Courtesy	5
LIRR	3
Figure 3.7 Applying Graphite to a Switch Plate on a Closed Point - Courtesy LIRR	
- right $ -$	5

Figure 3.8 Applying a Switch Plate Lubricant with a Spray Can and Applicator - Courtesy	
SacRT	
Figure 3.9 Oilet on a Circuit Controller - Courtesy LIRR	
Figure 3.10 Topical Application of Grease on a Motion Plate - Courtesy LIRR	
Figure 3.11 Application of Grease Via Grease Fitting - Courtesy LIRR	
Figure 3.12 Using a Rag to Tighten Coupling Between Grease Fitting and Grease Gun Nozzle	
Courtesy LIRR	
Figure 3.13 Grease Fittings - Courtesy LIRR	
Figure 3.14 Close Up of a Grease Fitting - Courtesy LIRR	
Figure 3.15 US&S M3 with Grease to Specified Spot - Courtesy PATCO	
Figure 3.16 White Lithium Grease in Gearbox Coating the Gears - Courtesy LIRR	
Figure 3.17 Example Lubrication Inspection Sheet - Courtesy LIRR	
Figure 3.18 Cleaning Point Detector Bar - Courtesy LIRR	
Figure 3.19 Layout showing hardware to inspect - Courtesy NFTA and MBTA	
Figure 3.20 Locking Dogs and Drive Roller - Courtesy LIRR	
Figure 3.21 Lock Rods Vertical View - Courtesy LIRR	
Figure 3.22 Lock Rods Horizontal View - Courtesy LIRR	
Figure 3.23 Lock Rods Engaged with Bottom Locking Dog on Slide Bar before Switch Moveme	ent
- Courtesy LIRR	55
Figure 3.24 Lock Rods Engaged with Top Locking Dog on Slide Bar after Switch Movement -	
Courtesy LIRR	56
Figure 3.25 New Lock Rod with Sharp Edges - Courtesy LIRR	56
Figure 3.26 Old Lock Rod with Rounded Edges - Courtesy LIRR	56
Figure 3.27 Discolored Contacts - Courtesy LIRR	57
Figure 3.28 Pitted Contacts - Courtesy LIRR	57
Figure 3.29 Burnt and Pitted Contact - Courtesy LIRR	57
Figure 3.30 Contact Point of Separation - Courtesy LIRR	
Figure 3.31 Spring Gauge Reading - Courtesy LIRR	58
Figure 3.32 CIL Monitor - Courtesy MBTA	59
Figure 3.33 Circuit Controller Heater - Courtesy NFTA	60
Figure 3.34 Movable Point Frog Diagram - Courtesy LIRR	
Figure 3.35 Movable Point Frog - Courtesy LIRR	
Figure 3.36 Locations of Switch Related Heaters - Courtesy LIRR	
Figure 3.37 Switch Heater Clamps - Courtesy LIRR	
Figure 3.38 Snow Melter Case on the Wayside - Courtesy LIRR	
Figure 3.39 Testing Switch Point Heater with Infrared Gun - Courtesy NFTA	
Figure 3.40 Testing Switch Point Heater with Spray Bottle - Courtesy NFTA	
Figure 3.41 Snow Covers - Courtesy MBTA	
Figure 3.42 Metal Basket Covers - Courtesy LIRR	
Figure 3.43 Clothe Basket Covers - Courtesy LIRR	
Figure 3.44 Appropriately Loosened Lock Rod Hardware - Courtesy LIRR	
Figure 3.45 Prying Point Open using a Operating Rod Wrench - Courtesy LIRR	
Figure 3.46 Adjusting Point Tension - Courtesy LIRR	
Figure 3.47 Point Detector Rod in Context of the Switch Layout - Courtesy LIRR	
Figure 3.48 Point Detector Rod in Context of the Circuit Controller - Courtesy LIRR	
Figure 3.49 Initial Check with Feeler Gauge between Roller and Bevel - Courtesy LIRR	

	o Gauge in Place at Far Point and Reverse Indication Contacts Open - C	•
LIRR		74
	o Gauge in Place at Near Point and Reverse Indication Contacts Open -	
	truction Gauge in Place on a Switch - Courtesy LIRR	
Figure 3.53 Obst.	truction Gauge in Place on a Lifting Block Derail - Courtesy LIRR	76
Figure 4.1 US&S	S T-21 Switch Machine - Courtesy LIRR	79
Figure 4.2 U5 Au	uxiliary Circuit Controller - Courtesy SacRT	79
Figure 4.3 W100	Auxiliary Circuit Controller	
Figure 4.4 Spring	g Switch - Courtesy SacRT	80
Figure 4.5 Diagr	ram of a Spring Switch - Courtesy SacRT	80
	Target Staff Bearing - Courtesy MBTA	
	et Bearing Location on T-20 - Courtesy MBTA	
	prication Inspection Sheet for a US&S T-21 Switch	
	l Contact - Courtesy LIRR.	
	urn Spring on an Auxiliary Circuit Controller - US&S	
	Circuit Controller Illustrating Clamp and Adjusting Screw - US&S	
õ	and Ball Stud on Operating Crank	
	sed Circuit Controller Box with Padlock in Place on a Low Profile Electr	
-	trical Locking on a Manual Switch on a Low Profile Electric Lock - Cou	
	inten Locking on a manual smith on a Low Projuc Licente Lock Cou	
	om 9B Electric Lock High Stand in Context in a Lab Setting – Courtesy M	
-		
Figure 4.16 Alsto	om 9B Electric Lock High Stand Control Panel – Courtesy METRA	
-	om 9B Electric Lock High Stand Control Panel - Courtesy METRA	
	shol Bottle - Courtesy LIRR	
Figure 5.1 Safely	y Removing Cover of a 5F - Courtesy MBTA	101
Figure 5.2 Movin	ng Cutout Switch Mechanism to Cutout Position - Courtesy SacRT	101
ē	glass Commutator Cover on 5E Machine - Courtesy NFTA	
	anent Magnet Type Motor- Courtesy MBTA	
Figure 5.5 Pinch	ed Wire - Courtesy MBTA	104
	Terminals and Wiring in Good Condition on an M23 Switch Machine - C	
	Terminuis una writig in Good Conation on an m25 Switch Machine - C	
	inals and Wiring in Good Condition on GRS 5F - Courtesy MBTA	
0		
0	s on a GRS 5E Commutator to Clean - Courtesy NFTA and MBTA	
	Motor Compartment Labeling Main Components - Courtesy MBTA	
U	Commutator and Brushes Illustrating Beveled Edge - Courtesy MBTA	
ē	umutator and Brushes on M23A in Good Condition - Courtesy MBTA	
U	mutator and Brushes on GRS 5F in Good Condition - Courtesy MBTA	
	of Clutch on M23 - Courtesy MBTA	
	gram GRS 5 Series Detent - Courtesy NFTA	
0	5 Series Detent - Courtesy NFTA	
0	8 and 5F Comparison Highlighting Motor Compartment, Gear Compartm	
	troller - Courtesy MBTA	
Figure 5.17 Oilet	t on a M23 Circuit Controller - Courtesy LIRR	112

Figure 5.18 Diagram of Point Detector Contact Yoke on a Model 5 - Courtesy NFTA	113
Figure 5.19 Picture of a Point Detector Contact Yoke on a Model 5- Courtesy MBTA	113
Figure 5.20 M23-A Circuit Controller Shaft Assembly - Courtesy MBTA	114
Figure 5.21 Brush Arm Pivot Point on a GRS Switch Machine - Courtesy LIRR	115
Figure 5.22 Oiling Crank Cutout Linkage on a 5E - Courtesy NFTA	117
Figure 5.23 Selector Lever Cutout Linkage on GRS 5F - Courtesy MBTA	117
Figure 5.24 Diagram of Motor and Indication Cutout Contacts Linkages on a M23 - Courte	esy
MBTA	. 118
Figure 5.25 Oil Location Specific to GRS 5 Series - Courtesy MBTA	119
Figure 5.26 Clutch Shifter Mechanism on a 5F Machine - MBTA	
Figure 5.27 Clutch Shifter Mechanism Lubrication Points on a 5F Machine - Courtesy MB	TA
	120
Figure 5.28 Lubrication Inspection Sheet for a US&S M23 Switch - Courtesy LIRR	121
Figure 5.29 GRS 5 Series Specific Oiling Points- Courtesy MBTA	
Figure 5.30 5F Circuit Controller Highlight Key Components - Courtesy MBTA	124
Figure 5.31 AAR Terminals on an M23 Switch Machine - Courtesy MBTA	
Figure 5.32 AAR Terminals on a GRS 5F - Courtesy MBTA	
Figure 5.33 Shunt Straps on a 5F - Courtesy MBTA	126
Figure 5.34 H-Bars - Courtesy MBTA	
Figure 5.35 Close-up of U-Shaped Spring on 5 Series - Courtesy MBTA	127
Figure 5.36 Snub Rectifier and Thermal Resistive Snub Wire in GRS 5 Series Circuit Contr	
Compartment - Courtesy NFTA	
Figure 5.37 Snub Rectifier on a Series 5 110 VDC Switch Machine - Courtesy MBTA	128
Figure 5.38 Placing Clamp On Amp Meter for Overload Test - Courtesy LIRR	132
Figure 5.39 Amperage Reading Taken by way of Analog Meter - Courtesy PATCO	
Figure 5.40 Wedging Clutch Housing to Prevent Movement - Courtesy MBTA	
Figure 5.41 5E Clutch Mechanism Highlighting Clutch Adjusting Nut, Locknut and Setscre	W -
Courtesy NFTA	134
Figure 5.42 5E Clutch Mechanism Highlighting Hand crank and 5/16 Inch Diameter Pin -	
Courtesy NFTA	134
Figure 6.1 Basic Components of an A-5 Electro-Pneumatic Switch - Courtesy LIRR	138
Figure .6.2 Compressor Air Lines/Hoses are a Tripping Hazard - Courtesy LIRR	139
Figure .6.3 NEVER Put Foot on Baseplate of a Pneumatic Switch/Derail - Courtesy LIRR	139
Figure .6.4 Spanner Wrench Ensuring a Tight Cylinder Plug - Courtesy LIRR	141
Figure .6.5 Deteriorated Air Hose/Line - Courtesy LIRR	
Figure .6.6 Dripping Oil onto Air Cylinder Piston Rod - Courtesy LIRR	145
Figure .6.7 Smearing Oil using a Lint free shop towel - Courtesy LIRR	
Figure .6.8 Piston in Proper Position for Lubrication - Courtesy LIRR	146
Figure .6.9 Piston in Wrong Position for Lubrication - Courtesy LIRR	146
Figure .6.10 Greasing Walking Beam Shaft - Courtesy LIRR	147
Figure .6.11 Removing Shifting Piston - Courtesy LIRR	148
Figure .6.12 Applying New Grease - Courtesy LIRR	148
Figure .6.13 A-5 Electro-Pneumatic Lubrication Inspection Sheet - Courtesy LIRR	149
Figure .6.14 Exploded View of a CP Valve - Courtesy LIRR	152
Figure .6.15 Valve Magnet Highlighting Armature Stem and Helper Spring - Courtesy LIRI	የ 153
Figure .6.16 Using Operating Wrench to Simulate Creepage of Slide Bar - Courtesy LIRR.	156

Figure .6.17 Voltmeter on Indication Contacts for Switch Restoring Circuit Test - Courtes	•
	156
Figure 6.18 Walking Beam at Center State During Minute Man Test - Courtesy LIRR	157
Figure 6.19 Covers and Lock Magnet Valve Stem Removed - Courtesy LIRR	158
Figure .6.20 Turning Off Globe Valve to Prepare for Switch and Valve Non-Corresponden	nce
Test - Courtesy LIRR	159
Figure .6.21 Removing Plug From Reverse Side of Air Cylinder to Prepare for Switch and	l Valve
Non-Correspondence Test - Courtesy LIRR	159
Figure 7.1 Diagram of Pressure Measuring Points on H&K Switch - Courtesy SacRT	163
Figure 7.2 Picture of H&K Switch Highlighting Pressure Measuring Points - Courtesy Sa	cRT
	163
Figure 7.3 Electrical Connections on an H&K - Courtesy SacRT	164
Figure 7.4 Lubrication Points - Courtesy SacRT	

How to Use the Participant Guide

Purpose of the Course

The purpose of the *Inspection and Maintenance of Switches and Derails* course is to assist the participant in demonstrating safe inspection and maintenance of switches, derails, and their associated components.

Approach of the Book

Each course module begins with an outline, a statement of purpose and objectives, and a list of key terms. The *outline* will discuss the main topics to be addressed in the module. A list of *key terms* identifies important terminology that will be introduced in this module. *Learning objectives* define the basic skills, knowledge, and abilities course participants should be able to demonstrate to show that they have learned the material presented in the module. A list of *key terms* identifies important terminology that will be introduced in each course module. *Review exercises* conclude each module to assist the participants in reviewing key information.

© 2019 Transportation Learning Center Content may have been modified by a member location. Original available on www.transittraining.net

Module 1

OVERVIEW AND SAFETY

Outline

- 1-1 Overview
- 1-2 Safely Working in an Electrified Territory
- 1-3 Switch and Derail Safety
- 1-4 Tools
- 1-5 Testing
- 1-6 Summary

Purpose and Objectives:

The purpose of this module is to provide the participant with an overview on how to safely inspect and maintain switches and derails.

Following the completion of this module, the participant should be able to complete the exercises with an accuracy of 70% or greater:

- Identify trip, slip and fall hazards related to inspection and maintenance of switches and derails
- Identify pinch points related to inspection and maintenance of switches and derails
- Describe how to manually throw a switch
- Demonstrate ability to utilize secondary protection in order to stop switch from being thrown
- Describe procedures for working in electrified territory
- Identify proper PPE to be used during inspection and maintenance of switches and derails
- Identify and describe tools specific to inspection and maintenance of switches and derails
- List Tests Mandated by the FRA
- List pertinent timing for each test (monthly, quarterly, etc) as per your authority
- Demonstrate ability to complete proper documentation

Key Terms

- 30 amp Current Meter
- Capacitors
- Cup Gauge
- Feeler Gauge
- Hand Position
- Insulation
- Job Briefing Meeting
- Lock Rod Wrench
- Lockout-Tagout
- Minute-Man Test
- Motor Overload Test
- Motor Position

- Obstruction Gauge
- Obstruction Test
- Operating Wrench
- Personal Protective Equipment (PPE)
- Pinch Points
- Point Detector Test
- Point Tension Test
- Road Worker in Charge
- RSA/AAR/Raco Wrench
- Selector Lever
- Switch Block And Spike

- Switch Crank
- Switch Lock
- Switch Restoring Circuit Test
- Switch Clamp
- Third Rail
- Time On The Line
- Trip, Slip, And Fall Hazards

Workbook

Securing the Area

Tuese I Security me work filled Defore Switch Inspection and Maintenance						
	Manual	Electric	Electro-Pneumatic	Electro-Hydraulic		
Request Time on Line	Х	Х	Х	Х		
Disconnect		Х	Х	Х		
Indication/Motor Power						
Secure Points	Х	Х	Х	Х		
Shut-off Pneumatic Valve			Х			

Table 1 Securing the Work Area Before Switch Inspection and Maintenance

As with most inspection and maintenance of signals, it is important to always make sure that your first step is to request **time on the line**. This means that dispatchers know that you are in the field and will not route any trains in your direction until time is removed or the RWIC gives permission

If the switch is electric and power is not needed, disconnect power to the motor. This can be done either by using the **hand throw selector lever**, if equipped. Otherwise, power can be removed by inserting the **hand crank**. This will prevent the possibility of the switch being thrown remotely.

For electrical, throw the switch into manual. This will be done differently depending on the specific switch. As illustrated in the video below, for a US&S M23, start by first removing the **switch lock** which is located at the **hand throw lever** (which is located at the **lever lock stand** - see Figure 1.2). Next, step on the **pedal**. Now the **selector lever** is free to be moved. Move the selector lever from the **motor position** to the **hand position**.

Figure 1.2 Hand Throw Lever in Lever Lock Stand

For electrical switches without hand throw ability, insert a hand crank which will open the crank contacts to switch, removing motor and in some instances indication power. If neither application is available remove power in the signal case by turning off breaker or removing the power fuse to the individual switch/s your are working on.

See Video 1.1 Putting Switch into Hand Throw for an illustration on how to put an electrical switch into hand throw (http://www.youtube.com/watch?v=XqPgoN27GUU)

For electro-pneumatic switches and derails, use the shut off valve to remove pneumatic pressure (air) - unless it is needed for the inspection/maintenance to be performed.

For in-pavement electro-hydraulic switches and derails, insert the hand throw lever into the lever box. At this point, the hand throw lever energizes the lever box proximity sensor, which deenergizes the motor and detector circuits. The switch can then be manually operated via the hand throw lever with a single stroke.

Figure 1.3 In Pavement Electro-Hydraulic Switch with Red Hand Lever in Place in Lever Box -

If it is not possible to remove power but the point will not need to be moved, the point should be secured using either a **switch clamp** or **switch block and spike** in order to diminish the chance of getting body parts pinched in the switch. Note that permissions may be required from dispatcher/center to block/clamp and spike the switch. Always follow your authority's procedures.

Figure 1.4 Switch Clamp

Figure 1.5 Switch Clamp in Use

For the switch clamp, clamp the point against the rail as close to the end of the point as possible. If the switch will be out of service for a long period of time, a switch clamp with a lock (Figure 1.4 and Figure 1.5) may be used. As always, follow your authorities' procedures.

Figure 1.6 Spike Against Closed Point

Figure 1.7 Block Wedged Tightly between Open Point and Stock Rail

When using the switch block and spike technique, a standard wood wedge will be put in the open point, pushed back until it is tight against the stock rail. A spike will be placed through the tie plate tight against the closed point.

Module 2

SWITCH AND DERAIL SPECIFIC PRINT READING

Outline

- 2-1 Overview
- 2-2 Switch and Derail Specific Nomenclature
- 2-3 Switch and Derail Specific Symbols
- 2-4 Switch and Derail Specific Relays
- 2-5 Switch and Derail Sequence of Operation
- 2-6 Summary

Purpose and Objectives:

The purpose of this module is to provide an overview of the specific nomenclature and relays used in railroad switch and derail systems and how they form the operation of railroad switches and derails.

Following the completion of this module, the participant should be able to complete the exercises with an accuracy of 70% or greater:

- List switch and derail specific nomenclature
- List switch and derail specific relays and describe their functions
- Using a print, describe the sequence of operation for an M3 single ended switch
- Demonstrate ability to outline the sequence of operation of a single-ended switch

Key Terms

- Call
- Clutch
- Control Circuit
- Correspondence
- Crank Cut-out Contact
- Field Wires
- Hand Crank
- Heater Circuit
- Indication Circuit
- Indicator
- Lock
- Lock Relay
- Motor Circuit
- Normal

- Normal Configuration
- Overload Coil
- Overload Relays • Stick Coil
 - Operation Coil
- Position
- Relay
- Reverse
- Reverse Configuration
- Shunting Strip
- Switch Control Relay (WR)
- Switch Machine Lock (SML)
- Switch Related Component
- Switch Repeater Relay

Table 3 Other Switch and Derail Specific Nomenclature (*Source: AR	Abbreviation		
Item*	AREMA*	Your Location	Notes
Switch operating mechanism or lock valve	W		
Relay, controller or contactor controlling both normal and			
reverse operations of a switch or an electric switch lock	WR		
Relay, controller or contactor controlling the normal			
operation of a switch or an electric switch lock	NWR		
Relay, controller or contactor controlling the reverse			
operation of a switch or an electric switch lock	RWR		
Relay repeating WR	WRPR		
Relay repeating position of switch	WPR		
Relay repeating normal position of switch or normal position of WPR	NWPR		
Relay repeating reverse position of switch or normal	RWPR		
position of WPR			
Indicator of the positions of a switch	WK		
Switch and derail lock operating mechanism on a switch	WL		
Relay repeating normal position of a switch lock	NWLPR		
Relay repeating normal position of a dual-control lever	NJPR		
Relay repeating reverse position of dual-control lever	RJPR		
Indicator of the normal position of a switch	NWK		
Indicator of the reverse position of a switch	RWK		
Indicator of the block condition in approach to a switch	WAK		-
Relay repeating reverse position of a switch lock	RWLPR		
Normal Switch Correspondence Relay	NWCR		
Reverse Switch Correspondence Relay	RWCR		
Spring Switch	SS		
Lock Relay	LR		
Reverse Switch Request Relay	RWZR		
Normal Switch Request Relay	NWZR		
Restore to Normal Request Relay	R-NWZR		

Table 3 Other Switch and Derail Specific Nomenclature (*Source: AREMA volume 4 page 208)

Workbook

© 2019 Transportation Learning Center Content may have been modified by a member location. Original available on www.transittraining.net

19

1

REVERSE CONFIGURATION - CONTROL CIRCUIT

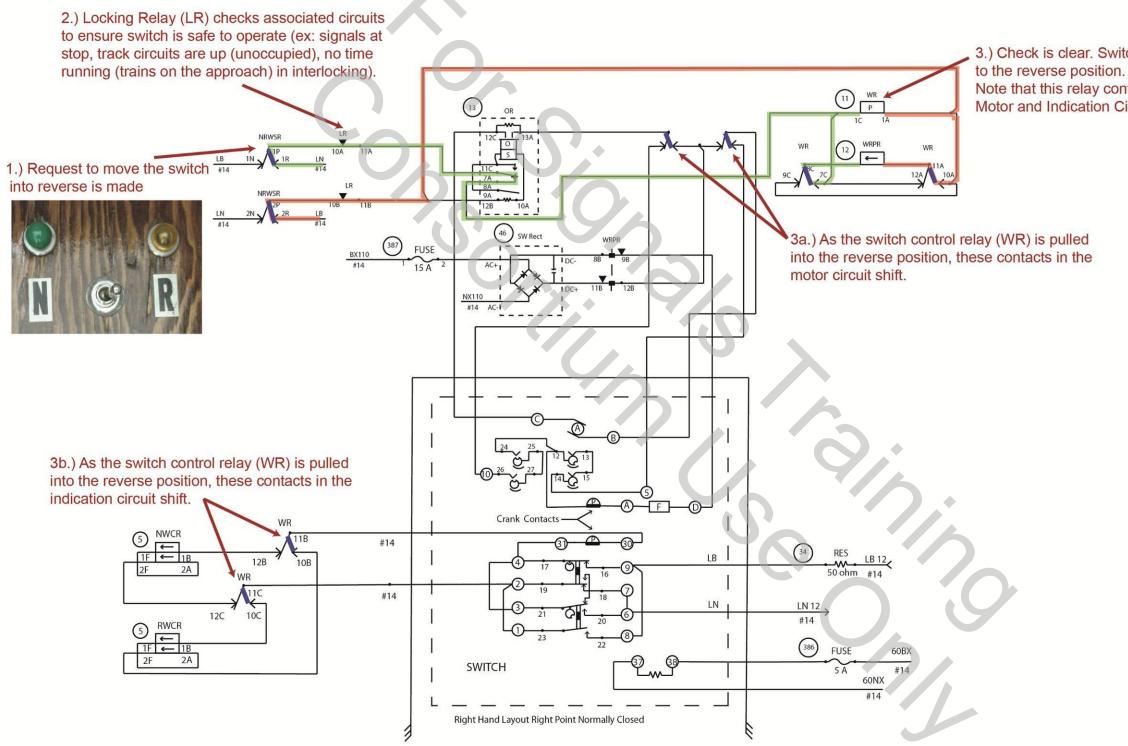
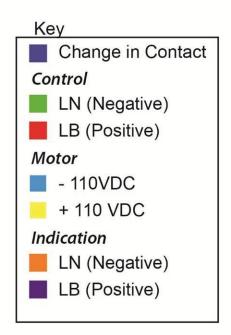



Figure 2.9 Example Reverse Configuration Control Circuit of an Electric Switch

Workbook

- 3.) Check is clear. Switch control relay (WR) will energize Note that this relay contains contacts which affect the
- Motor and Indication Circuits at 3a and 3b, respectively.

Module 3

GENERAL INSPECTION & MAINTENANCE OF SWITCHES AND DERAILS

Outline

- 3-1 Overview
- 3-2 General Inspection and Maintenance
- 3-3 Lubrication
- 3-4 Inspecting and Maintaining Rods
- 3-5 Inspecting and Maintaining Circuit Controllers
- 3-6 Inspecting and Maintaining Ancillary Parts
- 3-7 Seasonal Inspection and Maintenance
- 3-8 Testing
- 3-9 Inspection and Maintenance Cleanup
- 3-10 Summary

Purpose and Objectives:

The purpose of this module is to provide an overview of the inspection, maintenance and testing that is performed on all types of switches. More specific details for different types of switches will be covered in the following modules.

Following the completion of this module, the participant should be able to complete the exercises with an accuracy of 70% or greater:

- Identify hardware which needs to be tightened
- Demonstrate ability to tighten appropriate hardware
- Ensure all locks are in place and secure
- Identify areas/components which need to be lubricated on a regular PM schedule
- Inspect and maintain switch layout (where applicable)
- Describe purpose and components of mechanical locking
- Inspect and maintain lock rod
- Inspect and maintain throw rod
- Inspect and maintain point detector rod
- Inspect and maintain switch circuit controller
- Inspect and maintain switch point heaters/snow melters (where applicable)
- Inspect and maintain moveable point frogs
- Demonstrate ability to perform point detector test
- Demonstrate ability to perform obstruction test
- Demonstrate ability to adjust point tension
- Inspect and maintain circuit control heaters (where applicable)
- Demonstrate ability to test electrical indication

© 2019 Transportation Learning Center

3-2 GENERAL INSPECTION AND MAINTENANCE

Switch Keeper

Track Braces

The first step in doing any inspection and maintenance is to perform a sensory inspection. For switches and derails this includes walking the length of the layout, both inside and outside, to make sure that all **hardware** is in place, clean and secure. Hardware that should be checked include nuts, bolts, ties, points, derails, etc. One visual sign that may indicate that hardware is not secure is the presence of **rust** around that hardware. Pay special attention looking for items that would inhibit smooth movement of the switch point and/or hang the switch up.

The majority of hardware to check are nuts and bolts. These are found on operating rod, track rods, lock rods, point detector rods, yoke and on switch mounting bolts (on all four corners).

Hardware to check include:

- Nuts and bolts
- Switch Heater Terminations
- Bonding
- Ground Wires

- Switch keeper* also known as *Lock Stand*
- Track braces*
- Plates*
- Stock Rail Spikes/Screw Spikes*

Electro-Hydraulic Difference: do not inspect/maintain the following:

- Plates
- Stock Rail Spikes/Screw Spikes

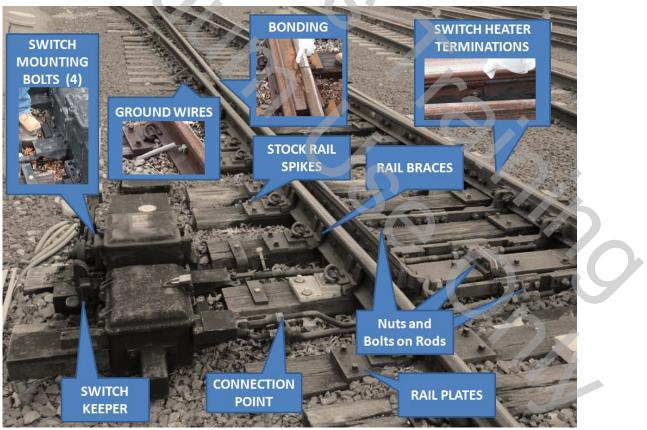


Figure 3.1 Switch Layout Highlighting Hardware to Inspect - Courtesy LIRR

An operating rod wrench or pry bar is used to make sure that the point or derail is tight against the stock rail. Next, the switch should be thrown. Notice any excessive movement of the tie plates, ties, stock rail or the switch machine itself. Additionally, make sure all appropriate locks are in place and secure. Generally, the locks that should be in place include the **keeper lock** also known as the *throw lock*, **circuit controller lock**, , **gear compartment locks**, two **motor locks** and a **junction box lock**, if equipped. Make sure to tighten any lose hardware and replace any pieces that are missing.

Table 7 Generic Sensory Inspection of Switches and Derails

Sense	Example Problems
Sight	Debris, dirt, clutter, untamped ballast, rotting, instabilities, rust, worn insulation, lubricant outside the gearbox, proper drainage, hairline damage or distortion to case, cover and/or other structural components, breaks/weak points or any other signs of physical damage.
Smell	Burning
Touch	Ioose points, hardware, etc
Hear	Grinding, clanging sound, loose or broken parts

During this walkthrough, perform a visual inspection of switch rod and gauge plate **insulation**. Worn/deteriorated insulation will not only disrupt the track circuit but can also affect the integrity/alignment of the switch layout. This may be a problem the day of inspection or in the future if further deterioration occurs. If insulation is worn and/or deteriorating, notify the correct personnel in charge so that it will be replaced as soon as possible.

Figure 3.2 Insulation - Courtesy LIRR