Instructor/Participant Guide

209: Escalator-Specific: Electrical Systems

Module 6: Description of Operation

>>>> Transit Elevator/Escalator Consortium

Tab	le of	f Con	itents:

Introduction	1
Schematic Diagrams	2
Line or Ladder Diagrams	
Flow Charts	
Block Diagrams	5
Pictorial Layout	
Up Direction - Run	
Drive Bypass	8
Low Speed Inspection	
Down Direction - Run	
Drive Bypass	11
Low Speed Inspection	
Normal Stop Sequence	
Emergency Stop Sequence	
Emergency Stop Sequence	
Summary	

Icons Used in This Guide

Throughout the Instructor's Guide, the following icons indicate the type of content presented.

Refer To

PowerPoint

Multimedia

Web based **Training**

Write

Ask

Individual Activity

Small Group Activity

Classroom **Activity**

Duration

Agenda

Topic No.	Topic Title	Duration
1	Introduction	5 minutes
2	Schematic Diagrams	15 minutes
3	Line and Ladder Diagrams	15 minutes
4	Flow Charts	15 minutes
5	Block Diagrams	15 minutes
6	Pictorial Layout	15 minutes
7	Start-Up Sequence	30 minutes
8	Stop Sequence	20 minutes
9	Summary	5 minutes
	Total Time:	2.25 hours

ii

Overview

Purpose

The purpose of this module is to:

Provide the participants with a basic knowledge of the startup sequence of a transit escalator.

Objectives

At the end of this chapter, the learner will be able to:

- Describe what a Schematic Diagram is and its usage
- Describe what a Line or Ladder Diagram is and its usage
- Describe what a Block Diagram is and its
- Describe what a Pictorial Layout is and its usage
- Describe the Start up Sequence of an escalator using a Schematic Diagram

Materials

Make sure you have the following:

- Laptop (one for leader)
- Participant Guides
- PowerPoint slide deck
- LCD projector
- A17.1 Safety Code for Elevators and **Escalators**
- A17.2 Guide for Inspection of Elevators, **Escalators and Moving Sidewalks**
- A17.3 Safety Code for Existing Elevators and Escalators

- Heavy Duty Transportation System Elevator Design Guidelines (APTA RT-RP-FS 008-03)
- Heavy Duty Transportation System Escalator Design Guidelines (APTA RT-RP-FS 007-02)
- Field Employees' Safety Handbook Transit Agency Handbook

Preparation **PREPARE** flip charts with the following title:

Class Expectations

Instructor's Notes Schematic Diagrams Schematic Diagrams Shows all circuit components in the form of electrical symbols. · Shows how they are wired together electrically without consideration of their actual physical relationships. . Shows how they interact with each other to produce the desired end result. >>>> Transit Elevator/Escalator Consortium Slide 3 Slide 4 **REVIEW** the details of schematic diagrams. **CONTENT:** Direct participants to describe in their own words a few details on schematic diagrams. APPLICATION FEEDBACK: Now that we have discussed a little about schematic diagrams, have the participants answer the following questions. ASK participants to describe the main benefit to using a schematic diagram.

Schematic Diagrams

What is the main benefit to using a schematic diagram?

Instructor's Notes

Description of Operation Flow Charts

- · Commonly used as visual aids for troubleshooting an escalator.
- Most useful when diagnosing complex networks of electrical and electronic circuits.

Slide 6

REVIEW slide 6 and discuss the purpose and details of flow charts.

CONTENT: Direct participants to describe in their own words the details of flow charts.

APPLICATION FEEDBACK: Now that we have discussed a little about flow charts, have the participants answer the following questions.

ASK: In what situations are flow charts most useful?

Flow Charts

In what situations are flow charts most useful?

Instructor's Notes Pictorial Layout Pictorial Layout · Shows circuit components as they physically exist in · Display the actual location of circuit devices and components in their actual format. · Useful when a conceptual view of an actual layout is >>>> Transit Elevator/Escalator Consortium Slide 9 Slide 10 **REVIEW** slides 9 and 10 and discuss pictorial layout. **CONTENT:** Direct participants to describe in their own words the uses of pictorial layouts. **APPLICATION FEEDBACK:** Now that we have discussed a little about pictorial layout, have the participants answer the following questions. ASK participants to describe when a pictorial layout is particularly useful.

Pictorial Layout

When are these views particularly useful?

Instructor's Notes

Drive Bypass

- When the step band reaches the contract speed-5%, the drive is turned off by turning off the "HSPD" and
- · The motor is disconnected from the drive by turning off the DRC output.
- · After an adjustable time period, the "UPO" output is
- Picks the "DIR" contactor.
- Connects the motors directly to the line.

)))). Transit Elevator/Escalator Consortium

Slide 12

REVIEW slide 12 and discuss drive bypass during normal operation.

ASK how the motor is disconnected from the drive.

Down Direction - Run

What controller ramps up the voltage and frequency output to the motor(s)?

Drive Bypass

Describe how the motor is disconnected from the drive.

Low Speed Inspection equence

Instructor's Notes

Low Speed Inspection

- . The PLC drive contactor control output "DRC" is turned on
- The PLC "DNR" output is turned on.
- . The drive relay output #2 is energized.
- The drive "ON" input tells the PLC that the drive is
- · The PLC brake output "BRAKE" is energized.
- . The PLC "ONRLY" output is turned on.
- . The PLC turns on the "ISPD" output.
- . The drive controller ramps up the voltage and frequency.
- · The escalator step band will reach the predetermined

Slide 16

REVIEW slide 16 and discuss the low speed inspection process.

CONTENT: Direct participants to describe in their own words the low speed inspection process.

APPLICATION FEEDBACK: Now that we have discussed a little about start-up sequence, have the participants answer the following questions.

ASK the participants to describe what questions must be answered before the low speed inspection sequence begins.

What questions must be answered before the PLC start se
begins?

